Flows – The Game Changer for Next-generation AI Systems

Flows is a service for chaining your image recognition and detection models into API. Build your own tagging system with large taxonomies and fewer data.
Nessi Voinova
28. February 2020

We have spent thousands of man-hours on this challenging subject. Gallons of coffee later, we would like to show you something that might change how you work with data in Machine Learning & AI. We believe that this simple idea speeds up your workflow to set up a complex computer vision system and brings unseen scalability to your team.

It’s already 2020, so let’s challenge ourselves! We are here to offer a lot more than just training models, as common AI companies do. Our purpose is not to develop so-called artificial general intelligence, or AGI, which would take over the world, but easy to use AI solutions for people like us.

AI Setup Cannot Get Much Easier

With flows, you can break your ML problem down into smaller, separate recognition tasks (models) and then easily chain these tasks one after each other to achieve the full complexity. The image processing can be conditional — for instance, your first recognition task filters out non-valid images, then your next task decides a category of the image and, according to the result, other tasks are employed to recognize specific features for a given category.


Flows allow your team to review and change datasets of all complexity levels fast and without any trouble. It doesn’t matter if your model uses three simple categories (e.g. cats, dogs and guinea pigs) or works with an enormous and extremely complex hierarchy with exceptions, special conditions and interdependencies: Flows will help you to review the whole dataset structure, to analyse and, if necessary, change its logic. With a few clicks, you can add new tasks, labels and change their chaining, you can change the names of the output fields, etc. Neat? More than that.

Think of Flows as being Zapier or IFTTT in AI.

Define a Flow with a Few Clicks

Let’s assume we are building a real estate website, and we want to automatically recognize the different features visible on the photos. But there are different features to be recognized for an apartment and for different kinds of houses. Here is how we can define this workflow using recognition flows:

First, we let the top category task recognize the type of estate (Apartment vs. Outdoor House). If it is an apartment, we can see that two subsequent tasks are called — “Apartment features” and “Room type”. If the image is an Outdoor house, we continue processing by another nested flow called “Outdoor house”:


In this flow, we can see another branching according to a task that recognizes “House type” and different tasks are called for individual types (Bungalow, Cottage, …).

Best Application — Fashion Tagging

We are playing with the Fashion subject since the inception of Ximilar. It is the most challenging and also the most promising one. We have created all kinds of tools and helpers for Fashion, such as Annotate App, and now we are proud to have a very precise service (see demo) with a rich Fashion Taxonomy. This is what we can say about a dress now:


Download Fashion Taxonomy Sheet

And, of course, Fashion Tagging is internally powered by Flows. It is a huge project with several dozens of features to recognise, about a hundred recognition tasks and hundreds of labels all chained into several interconnected flows. In this way, we define our taxonomy and each image traverses through this taxonomy tree. This is our “top classifier” — a flow that can tell one of our seven top categories of a fashion product image. For instance, if it is a “Clothing” product, the image continues to “Clothing tagging” flow.


And we are not finished yet

Stay tuned for a subsequent blog post about how to get maximum out of Flows — we plan to add “object detection” to flows. Imagine a dentist assistant app: you take a picture of a dental x-ray, your first model detects individual teeth, the Flow then cuts out the image are of each tooth and so that your other model can recognize if the tooth is healthy or not. And you don’t have to write a single line of code to achieve this! Looking forward to it? We certainly are!


Try It Now — it’s Free

And what’s the best part? Flows are part of Ximilar’s free plan, and you can try them right now. Register or Sign-Up, activate Flows service in the Ximilar App, right at the Dashboard, and you can interconnect tasks and labels defined in your Image Recognition service like we just explored.

Before Flows, setting up the AI Vision process was a tedious task for a skilled developer. Now everyone can set up, manage and alter steps on their own. In a comprehensive, visual way. Being able to optimize the process quickly, getting a faster response, losing less time and expenses, delivering higher quality to customers.

We strongly believe you will love Flows as much as we enjoyed bringing them to life. And even if you feel like there is a feature missing, let us know, we are open to refining what we have, to even increase the superpowers the Flows feature has.


    Send me Fashion Tagging taxonomy

    We care about your privacy & will only contact you about Ximilar product & services.

    Related Articles

    A step-by-step guide for using image similarity as a service. Find similar items with accurate & fast API for Image Search.
    Read moreJuly 2021
    Tips and tricks for developing and improving your custom image recognition models and deploying them as API with the Ximilar platform.
    Read moreJuly 2021
    With a new custom image similarity service, we are able to build an image search engine for collectible cards trading.
    Read moreJune 2021