The Best Resources on Artificial Intelligence and Machine Learning

List of great books, podcasts, magazines, lectures, blogs & papers from the field of AI, Data Science, and Machine Learning.
Michal Lukáč, Ximilar
Michal Lukac
8. July 2020
Illustration image

Over the years, we machine learning engineers at Ximilar have gathered a lot of interesting ML/AI material from which we draw. I have chosen the best ones from podcasts to online courses that I recommend to listen to, read, and check. Some of them are basic and introductory, others more advanced.  However, all of them are high-quality ones made by the best people in the field and they are worth checking. If you are interested in the current progress of AI or you are just curious about what will be in the future then you are on the right page. AI will change all possible fields, whether it is physics, law, healthcare, cryptocurrencies, or retail and one should be prepared for what is to come…


If there is one medium that has become popular in recent years, it must be podcasts. Everyone is doing it right now – there are podcasts about sex, politics, tech, healthcare, brains, bicycles… and AI is not missing. But one of them stands out. It is a podcast by Lex Fridman. This MIT alumni is doing an incredible job by interviewing the top people from the field, famous people included (like Garry Kasparov or Elon Musk). Some episodes are more about science, physics, mind, startups, and the future of humanity. The ideas presented in the podcast are just mind-blowing. The talks are deep, but clever and it will take you some time to get through them.

The Turing test is a recursive test. The Turing test is a test on us. It is a test of whether people are intelligent enough to understand themselves.

  • Lex Fridman and Garry Kasparov [Youtube]
  • Lex Fridman and Sam Altman (CEO of OpenAI) [Youtube]
  • Lex Fridman and Eliezer Yudkowsky [Youtube]
  • Lex Fridman and Max Tegmark [Youtube]
  • Lex Fridman and Ilya Sutskever [Youtube]
  • and many others …

Another great podcast is Brain Inspired by Paul Middlebrooks with interesting guests. It shows and discusses topics from Neuroscience and AI and how these fields are connected together.


Life 3.0 by Max Tegmark – How will AI change healthcare, jobs, justice, or war? Max Tegmark is a professor at MIT who has written this provocative and engaging book about the future. He tries to answer a lot of questions like What is intelligence? Can a machine have a consciousness? Can we control AI? … This is a great introduction even for non-technical people.

Human Compatible by Stuart Russel is an important book that ask questions on how to coexist with intelligent AI in future.

AI Superpowers: China, Silicon Valley, and the New World Order by Kai-Fu Lee – A book about the incredible progress in AI in China.

Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron – Do you know how to code and would you like to start with some experiments? This book is not only about one of the most popular programming frameworks (TensorFlow) but also about modern techniques in machine learning and neural networks. You will code your first image recognition model and learn how to pre-process and analyze text.

Deep Learning for Coders with fastai and PyTorch by Jeremy Howard and Sylvain Gugger – Another great book for coders. Code examples are in the PyTorch framework. Jeremy Howard is a famous researcher and developer in the AI community. His fastai project helps millions of people to get into deep learning.

There are many more interesting books oriented for software developers like Deep Learning with Python by François Chollet. Looking for more hardcore books with math equations? Then try Deep Learning by MIT Press. Are you interested in classic approaches, then many university students will remember preparing for exams with Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig or the Bishop’s Pattern Recognition and Machine Learning. (These two are a bit advanced and many topics are for a master or even PhD level.)


MIT Technology Review is a great magazine with the latest news and trends in technology and future innovations. The magazine covers also other interesting topics as biotechnology, blockchain, space, climate change, and more. There is a print or digital access option for you.

Popular videos & channels

People to Follow

There are a lot of famous Scientists & Engineers & Entrepreneurs to follow. For example, often mentioned Jeremy Howard (, Andrej Karpathy (Tesla AI), Yann LeCun (Facebook AI), Rachel Thomas (, data ethics), Francois Chollet (Google), Fei-Fei Li (Stanford), Anima Anandkumar (Nvidia AI), Demis Hassabis (DeepMind), Geoffrey Hinton (Google), Eliezer Yudkowsky (AI Aligment), Ilya Sutskever (OpenAI) and more…

Lectures & Online courses

So you’ve read some books and articles and now you want to start digging a little deeper? Or you want to become a Machine Learning Specialist? Then start with some online courses. Of course, you will need to learn a little bit about math before and get some basic programming skills. Online courses are a great option if you can’t study at university or you want to get knowledge at your own pace. Here are some of the courses that can serve you as the starting point:

  • Elements of AI –  was created by University of Helsinky for broader audience, it’s not very technical and can be great introduction for beginners
  • Machine Learning course from Andrew Ng – this one is a classic and most popular one for a number of reasons, it’s a great introductory material.
  • To learn more math, we can recommend Mathematics for Machine Learning.
  • Deep Learning specialization is more about modern approaches of neural networks.
  • There are a lot of great specializations on Udacity by top companies and engineers from various fields like Healthcare or Automotive.
  • CS231nCS224N and CS224W are great Stanford courses for computer vision, natural language processing (NLP) and graphs, including video lectures, slides, and materials. It’s FREE!
  • 6.034 and 6.S191 – lectures for AI and Deep Learning by MIT on YouTube.
  • Practical Deep Learning for Coders by – Jeremy Howard is doing a great job here by explaining concepts, ideas and showing the code in Jupiter notebooks.
  • PyImageSearch – offers great introductory tutorials in the computer vision field.
  • Full Stack Deep Learning – great course for whole cycle of developing machine learning systems

Research blogs

You know how to code and you even know how to build your CNN? Or are you just simply interested in what is the future of the field and how the companies are using AI? Check out some of the latest trends and SOTA approaches from the top research groups in the world. There are several giants like Apple, Facebook or Google pushing the AI boundaries:

  • Facebook AI Research – most of the research from the Facebook team is done in Recommender systems, NLP, and Computer Vision.
  • Google AI Blog – Google is probably the most dominant player in AI, check out, for example, their weather prediction system.
  • Microsoft Research – Microsoft has one of the oldest research group from all companies. It is investing heavily in AI, Computer Vision and Augmented Reality (AR)
  • Google Deepmind blog – using AI to solve difficult problems from healthcare solutions to playing StarCraft 2.
  • Open AI Blog – how to solve Rubik’s cube by robotic hand or would you like to generate music on one click?
  • Baidu Research – research blog by one of the largest internet companies in China.
  • Malong – research by a company focused on AI for the retail industry (Malong provides in-store product recognition & loss prevention AI to Walmart and other major retailers)
  • NVIDIA Blog and AI research – the biggest GPU creator is doing research in many fields  (from accelerating research speed in healthcare to improving the gaming experience).
  • Distill – beautiful and interactive visualizations and explanations of the topics from deep learning. People behind this project are from Open AI, Tesla, Google…

There are also a lot of AI research labs located on best universities as MIT, Stanford, Berkeley, …

Great articles in AI field

We are always looking for high-quality content that is why some of the following articles can be a bit longer. AI is a complex field which is disrupting the way we live and do business:


Trends & Problems

  • AI Aligment & Safety problem – Have future super-intelligent AGI systems same values as humanity? This is one of the toughest and most important challenge. With AI race started by OpenAI/Microsoft and Google via Large language models (LLM) & multi modal models, we have a less time to solve AI safety.
  • Ethics, Transparency & Safety & Regulations – Should countries ban the usage of face recognition technology? [source][source] Is it ethical to scrape the data from the internet to build your face search startup? [source] What is an unethical use of AI? [source] What about autonomous weapons for defensive purposes? Are social media polarizing people with their clever algorithms optimized for more clicks/likes/…? [source]
  • Jobs replacement – Will AI replace all manufacturing and basic jobs? Or will the knowledge workers be first? Will the research in AI create even more job opportunities? What is going to happen in countries that are heavily dependent on manual work labour? [source] Will companies that are using robots/clever algorithms pay AI Tax one day? With Large Language Models (LLM) models many content and copywriters are losing their jobs. Same is happening with graphics designers with generative AI like midjourney. Github Copilot and similar tools will one day probably replace programmers. Being programmer myself I’m not sure if I’m happy about it and in ten years maybe I will need to switch to other job profession.
  • Interpretability & Explainability & Racial bias – Why did the deep learning model predict X and not Y? What has the neural network actually learned? How can we fool the model with adversarial attacks to make it predict wrong? Can models discriminate because of your race? it is a big issue not only in Face recognition, Insurance, and Healthcare. [source]
  • Generative models – GANs, and generative models like stable diffusion, are an incredible technology that brings a lot of challenges. Have you heard about Deep Fakes videos? One day, a large percent of the internet content will be created by generative AI. The Deep Fakes will be unrecognizable from human content. This could create new problems in politics, business, security or our personal lives. Will there be some proof by human protocol then?
  • Big and Small models, IoT and Environment impact – Bigger models can lead to incredible results in NLP [source][source]. However only few top companies as Microsoft, Google or Amazon have resources to train them. On the other hand, there is also more research to make models lighter and faster with binarization or pruning techniques. Small models does not require computers with gpus. Not every part of the world is connected to fast internet and AI on edge devices are becoming more popular.

Biggest Breakthroughs in AI

A lot of things happened during the last years, here are some research articles that pushed boundaries of AI by large margin ordered by date (since 2010):

Here is the hall of fame in complex Artificial Intelligence projects:

  • AlphaGo by Google/DeepMind for beating the best human players in the GO game
  • AlphaFold by Google/DeepMind for solving the protein structure prediction (2020)
  • LLM / GPT-3 and ChatGPT by OpenAI for advanced language model that can do a LOT of things with texts and language
  • DALL-E 2 and stable diffusion models by OpenAI and Midjourney for advances in image generation (2022)

That is all for now. There are other great resource lists like the one from DeepMind, from which I got inspired. The list is divided by the level of the target audience – introductory, intermediate, and advanced. We will try to keep this post updated and if we find a gem, it will definitely appear here. There is much more material from which you can learn, but now it’s up to you to start your own machine learning journey. We will try to keep this article updated with latests news in Artificial Intelligence.

Last update of this article: May 2023

Michal Lukáč, Ximilar

Michal Lukáč ML Engineer & Co-founder

Michal is a co-founder of Ximilar and a machine learning expert focusing mainly on image recognition, visual search and computer vision. He is interested in science, loves reading books and Brazillian Jiu-Jitsu.

Related Articles

Introducing sports card recognition API for card collector shops, apps, and websites.
Read moreFebruary 2024
An overview and analysis of serving systems and deployment methods for Machine Learning and AI models.
Read moreOctober 2023
An in-depth look into AI card grading by Ximilar individually evaluating centering, edges, corners, and surface according to PSA or Beckett.
Read moreSeptember 2023